

# CubeSat Telecom System Needs for Deep-Space Missions

2017 Interplanetary Small Satellite Conf. San Jose, California, USA 1-2 May 2017



M. Michael Kobayashi

Jet Propulsion Laboratory at the California Institute of Technology

### Outline



- Deep-Space telecom needs
- Survey of CubeSat communication systems
- Overcoming large distances
- Navigation in deep space
- Iris Deep-Space Transponder
- Iris hardware design description
- Software Defined Radio heritage
- Comparison of deep-space transponders
- Planned deep-space CubeSat missions
- Future enhancements

## Deep-Space Telecom Needs



<u>Trajectory</u>
Large free-space path loss
Spacecraft dynamics effects





Navigation
Outside GPS signal range
No Earth's magnetic fields



Environment

High ionizing radiation

Clock stability over mission duration

## Deep-Space Telecom Needs



<u>Trajectory</u>
Large free-space path loss
Spacecraft dynamics effects



Large aperture antennas Low receiver sensitivity





<u>Navigation</u>
Outside GPS signal range
No Earth's magnetic fields



Radiometric Navigation Techniques



Space-grade parts
Coherent Transponder



Environment

High ionizing radiation

Clock stability over mission duration

An equally capable ground station to support deep-space exploration needs is required.

## Survey of CubeSat Telecom Systems





Frequency Bands

UHF
73%

S
11%

VHF
11%

Other
1%

Deep-space frequency band limited to S, X, and Ka

**Modulation Schemes** 



PSK highly recommended by CCSDS for deep-space use

**RF Output Power** 



Higher power for farther distances necessary

<sup>\*</sup> Data Source: B. Klofas, CubeSat Communications System Table, Version 13, 16 Aug 2016.

## **Overcoming Large Distances**













## Navigation in Deep Space



- Support radiometric navigation (ranging, Doppler track, VLBI) for orbit determination
  - A carefully characterized <u>Coherent Radio Transponder</u> is necessary for turn-around ranging on the S/C
  - Transmitter with special DOR tones for VLBI support (note: need two Earth stations to support)
  - Earth Station equipped with navigation processing tools
- Stable reference clock for reduced navigational error
  - Detect milli-Hertz variations within GHz signals.
  - Long integration times with low frequency drift
    - Stability required over round-trip light time (ranging)
    - VLBI tracking times 8-12 hours.

 $20\log_{10}\left(\frac{f_{link}}{f_{ref}}\right)$ 

- Overcome S/C dynamic effects
  - Configurable carrier tracking loops for varying dynamics
  - Pre-emphasis Doppler compensation from Earth station







## Iris Deep-Space Transponder



- CubeSat/SmallSat compatible deep-space transponder
- ~0.5U volume (100.5 x 101.0 x 56.0 mm; transponder only)
- DSN/NEN-compatible X-band uplink/downlink (7.2GHz/8.4GHz)
- Software Defined Radio with Leon3-FT softcore processor
- Provides navigational support (Doppler, Ranging, DDOR)
- Modular hardware design for other frequency bands (UHF, S-band, Ka-band)

| Iris Specification    | Units | Iris V1.0<br>for INSPIRE | Iris V2.0<br>for MarCO | Iris V2.1<br>for SLS EM-1                  |
|-----------------------|-------|--------------------------|------------------------|--------------------------------------------|
| Mass                  | grams | 450 (no chassis)         | 1210 (w/ UHF-Rx)       | < 1000 (X/X-only)                          |
| Volume                | U     | 0.46                     | 0.77 (w/ UHF-Rx)       | 0.56                                       |
| Bus Input Voltage     | Vdc   | 6.4 – 8.4                | 10.5 – 12.3            | 9.0 – 28.0                                 |
| DC Power*             | W     | 13.0                     | 35.0                   | 33.7                                       |
| RF Output Power*      | W     | 0.15                     | 3.3                    | 3.8                                        |
| Receiver Noise Figure | dB    | 5.0 – 6.0                | 3.5                    | 3.5                                        |
| Receiver Sensitivity  | dBm   | -135 @ 70Hz LBW          | -139 @ 70Hz LBW        | -151 @ 20Hz LBW                            |
| Uplink Data Rate†     | bps   | 1,000                    | 62.5 & 1,000           | 62.5 – 8,000                               |
| Downlink Data Rate†   | bps   | 62.5 – 64,000            | 62.5 & 1,000 & 8,000   | 62.5 – 256,000                             |
| Telemetry Encoding    |       | Conv & Reed Solomon      | Turbo-1/6 only         | Conv, Reed Solomon,<br>Turbo 1/2, 1/3, 1/6 |
| Radiation Tolerance   | krads | N/A                      | 15.0 TID               | 23.0 TID                                   |
| S/C Interface         |       | 1 MHz SPI                | 1 MHz SPI              | 1 MHz SPI                                  |







<sup>\*</sup> Nominal at ambient

<sup>†</sup> Subject to link margin

## Hardware Design Considerations



- Modular hardware built of slice elements
  - NASA-STD-4009 (Space Telecom Radio System) guidelines
  - Slices are interconnected with stacking connectors
  - RF modules are generic to allow future designs with other frequency bands (UHF, S, Ka)
- Radiation tolerant up to 23 krads; no destructive SEL.
- EMI covers/shields to minimize radiated emissions
- Emphasized efficient thermal design





## Top-Level Block Diagram





### Iris Hardware Photos



### <u>Digital Processor</u>

Virtex-6 FPGA

SRAM FLASH

**Rx-PLL** 

**TCXO** 



DDS DAC

1V Reg

**Switchers** 

### **Power Supply**



Flyback Conv

X-band Exciter



Tx-Out

I/Q Mixer

> Img-Rej Mixer

Tx-PLL

Rx-In

### X-band Receiver



IF Amps

SAW Filters

**VVAs** 

### **Software Defined Radios**



- Leading the pathway to "smart radios"
  - Reconfigurable to adapt to mission-specific needs
  - Platform for rapid technology infusion
    - Delay/Disruption Tolerant Networking
    - Pseudo-noise (PN) Regenerative Ranging
    - Advanced higher-order modulation schemes
    - State-of-the-art Forward Error Correction algorithms













12

## Software Defined Radio Heritage Pieces







## Deep-Space Transponder Comparisons





9.5 W

12.0 W

**Frontier** 

**XTRP** 

≥ 32k

75M

Telemetry Rates

## Planned Deep-Space CubeSat Missions



| L | 1.5 Mkm | 15 Mkm  | 84 Mkm  | 110 Mkm | 160 Mkm |
|---|---------|---------|---------|---------|---------|
| P | 0.01 AU | 0.10 AU | 0.56 AU | 0.74 AU | 1.07 AU |









#### INSPIRE, JPL

Provide reduced size and cost components to enable a new class of interplanetary explorers.

#### CuSP, SwRI

Study the dynamic particles and magnetic fields that stream from the Sun and as a proof of concept for the feasibility of a network of stations to track space weather.

#### BioSentinel, AMES

Use yeast to detect, measure & compare the impact of deep space radiation on living organism over long durations beyond low-Earth orbit.

### NEA Scout, MSFC

Proof-of-concept of a solar sail CubeSat capable of encountering near-Earth asteroids (NEA).

#### MarCO, JPL

Provide real-time bent-pipe relay communications during InSight's Entry-Descent-Landing into Mars

## Future Enhanced Iris Capabilities



- Higher downlink rates beyond 2Mbps
- Low-Density Parity-Check (LDCP) code
- SpaceWire interface for high-rate data transfers to S/C C&DH unit
- Pseudonoise (PN) RegenerativeRanging for improved ranging SNR
- Reliable space-link protocols (CCSDS Prox-1 protocol)
- Delay/Disruption Tolerant Networking
- Other frequency bands (UHF, S, Ka)



### TRL-4 S-/Ka-band exciter

S-band RF output: 0dBm

S-band phase noise: -95 dBc/Hz

Ka-band RF output: -13dBm

Ka-band phase noise: -74 dBc/Hz

Power: 4.7W

### Conclusion



 Iris Deep-Space Transponder with radiometric tracking support for orbit determination of CubeSats.

 NASA's Deep Space Network functions for overcoming the challenges of deep-space telecom and navigation.

 Software defined radios as "smart radios" to enable rapid technology infusion.



jpl.nasa.gov